10-1.Circle and System of Circles
hard

If the circles ${x^2}\, + {y^2}\, - 16x\, - 20y\, + \,164\,\, = \,\,{r^2}$ and ${(x - 4)^2} + {(y - 7)^2} = 36$ intersect at two distinct points, then

A

$0 < r < 1$

B

$1 < r < 11$

C

$r>11$

D

$r=11$

(JEE MAIN-2019)

Solution

${x^2} + {y^2} – 16x – 20y + 164 = {r^2}$

$A\left( {8,10} \right),{R_1} = r$

${\left( {x – 4} \right)^2} + {\left( {y – 7} \right)^2} = 36$

$B\left( {4,7,} \right),{R_2} = 6$

$\left| {{R_1} – {R_2}} \right| < AB < {R_1} + {R_2}$

$ \Rightarrow 1 < r < 11$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.